当前位置:首页 » 行业资讯 » 周边资讯 » 正文

不同工作负载的服务器数量:为数据库、应用程序和网站定制 (不同工作负载一样吗)

概述

不同类型的应用程序和服务对服务器的需求不同。数据库、应用程序和网站都有自己独特的需求,因此需要根据其具体工作负载来定制服务器数量。

数据库

数据库通常是数据密集型的,对存储、性能和可靠性有很高的需求。在确定数据库服务器数量时,需要考虑以下因素:数据库大小:数据库的大小将决定所需的存储容量。查询复杂性:复杂的查询需要更多的处理能力。并发性:服务器将同时处理多少个连接。容错性:需要多少个服务器来保证数据的高可用性低流量网站,一个服务器可能就足够了。对于高流量或交互式网站,可能需要使用多个服务器来满足其需求。

不同的工作负载一样吗?

答案是否定的。不同的工作负载对服务器的需求各不相同。数据库通常是数据密集型的,需要高存储容量和性能。应用程序对服务器的需求取决于其功能、用户数量和并发性。网站对服务器的需求取决于其流量水平、内容类型和交互性。

结论

为特定工作负载定制服务器数量至关重要,以确保应用程序和服务以最佳性能运行。通过考虑本文概述的因素,您可以确定满足特定需求的适当数量的服务器。


服务器是计算机网络运行管理服务的中枢,请简要阐述网络服务器选型的基本策略。

一、服务器选购策略 选择一款合适的服务器来满足用户的需要,需要对服务器使用有一个正确的理解。

在进行服务器选配时,应根据以下3个方面来考虑。

1.网络环境及应用软件是 指整个系统主要做什么应用。

具体来说就是服务器支持的用户数量、用户类型、处理的数据量等方面内容。

不同的应用软件工作机理不同,对服务器选配的要求区别很大,常见的应用可以分为文件服务、Web服务、一般应用和数据库等。

2.可用性服务器是整个网络的核心,不但在性能上能够满足网络应用需求,而且还要具有不间断地向网络客户提供服务的能力。

实际上,服务器的可靠运行是整个系统稳定发挥功能的基础。

3.服务器选配服务器类型,如低端、中端和高端的分类,只是确定了服务器所能支持的最大用户数。

但要用好服务器,还需要优化配置,用最小的代价获得最佳的性能。

二、常见应用分析在中小企业环境中,常见应用可以概括为以下几种,它们对服务器的要求各有所侧重。

下面为了描述方便,把服务器划分为4个功能模块,即CPU、内存、磁盘子系统和网络子系统。

1.文件服务这是最基本的应用服务,服务器相当于一个信息系统的大仓库,保证用户和服务器磁盘子系统之间快速传递数据。

在服务器的各个子系统中,对系统性能影响最大的首先是网络子系统,其次是磁盘子系统,再次是内存容量,而对CPU的要求一般不高。

2.数据库服务对系统各方面(除网络子系统外)性能要求最高的应用,如财务、库存和人事管理应用等。

需要高性能CPU和快速的磁盘子系统来满足大量的随机I/O请求及数据传送。

服务器瓶颈依次为:内存、磁盘子系统和CPU。

3.邮件服务扮演电子邮件路由器和仓库的角色。

服务器瓶颈依次为:网络子系统、内存、磁盘子系统和CPU。

服务服务器的性能是由网站内容来决定的。

如果Web站点是静态的,系统瓶颈依次是:网络子系统和内存。

如果Web服务器主要进行密集计算(例如动态产生Web页),系统瓶颈依次是:内存、CPU、磁盘子系统和网络子系统。

5.多媒体服务负责媒体控制及媒体流在网络上传输的功能,I/O吞吐量对服务器性能起着关键的影响。

视频服务器的瓶颈依次是: 网络子系统、磁盘子系统和内存。

音频服务对服务器硬件配置要求很低,现在的服务器子系统一般不会成为瓶颈。

6.终端服务执行各种应用程序并把结果传送给用户,所有负载均加在服务器上。

系统的瓶颈通常依次为: 内存、CPU、网络子系统。

7.主域控制器主域控制器是网络、用户和计算机的管理中心,负责提供安全的网络工作环境。

主域控制器不但响应用户的登录需求,而且在服务器间同步和备份用户帐号、WINS和DHCP数据库等,另外,主域控制器还做DNS服务。

系统瓶颈是网络子系统、内存。

三、可用性的影响 一台经常死机的服务器是不可忍受的,由此所造成的损失不仅仅是时间的浪费,还可能使多日的工作量付之流水。

现在越来越多的人已经意识到系统可用性的重要性。

可 用性通常用系统的理论正常运行时间和实际使用时间百分比来衡量。

例如,我们说一系统提供24×7环境下99%的可用性,也就意味着一年可能要停机88小时,这对大部分用户来说是都是不能接受的。

99.999%的可用性可以保证系统一年停机的时间在 5.25分钟之内,但是这种系统的价格非常昂贵。

服务器的可用性主要取决于2个方面:一个是服务器本身的质量,具体体现在服务器厂商专业的设计、严格的质量控制以及市场的长期验证三点上; 另一个是对易损部件采取的保护措施,比如: 采用网卡冗余技术、磁盘阵列技术、电源冗余技术、双机或集群方案等来保证网络、磁盘、电源甚至整个主机的在线冗余。

在低档服务器中,通常采用以下措施来提高单机的可用性。

RAID通过廉价的磁盘阵列提供数据冗余功能。

磁盘故障是服务器硬件故障的主体,故障率高达52%。

数据丢失的危害也是惊人的,造成大量时间、人力的浪费。

目前IDE RAID能够实现RAID-0、RAID-1、RAID-0+1共三种方式,其中RAID-0不具备数据冗余功能,但能显著提高磁盘子系统的性能。

技术可以检查出两位内存错、并能够纠正一位错,来保证内存、缓存中数据的高可靠性。

3.服务器专用电源可以保证系统有一个洁净的用电环境,减少各种隐性故障的发生,而劣质电源容易引起各种古怪故障,如电路中的高频串扰会造成系统经常性的崩溃、低频震荡则会烧毁电子元器件于无形,这类故障也增加了维修难度。

4.附加措施如防尘网的设计、多个风扇的散热(有的服务器还具有自动调节风扇转速功能),可以帮助服务器在普通环境中也能稳定运行。

四、服务器选择的多样性目前中小企业在选购服务器时,通常在高档商用PC、伪服务器以及低档服务器三种产品之间选择。

下面分别对这三种服务器作一简单分析。

1.高档商用PCPC工作在单用户和单线程环境中,与服务器的多用户环境有显著的不同。

PC在设计时采用不同部件选型、配置的策略,如增强的显示性能、相对较差的网络子系统等。

高档PC的目标是进军低档工作站市场。

2.伪服务器最差劲的是用PC的处理器芯片、服务器的名来充当服务器,稍微好一些的服务器采用部分服务器技术,如专业电源等。

3.低档服务器通常兼顾性能、可扩展性、可用性和可管理性等多个性能指标,兼容多种操作系统以支持多种网络环境。

此种产品的缺点(也是辨别方法)是:体积大(通常外形不够美观)、噪音大(散热风扇多)、功率大。

五、操作系统配置 一个性能优良的信息系统除了取决于网络硬件设备的性能和网络结构设计外,很大程度地受到局域网中服务器的操作系统性能的影响。

作为工作组级服务器的操作系统,在选择上应考虑 系统的可靠性,即是否能负担大量用户的服务请求,以较快的速度处理数据,合理地排列服务等问题;系统是否方便使用和管理,在单机和联机环境中,易用性都是最大化雇员工作效率和满意度的关键因素,与此同时,降低成本也是绝大多数企业优先考虑的问题。

目前,考虑连接局域网与广域网方面的性能,连入Internet几乎是目前所有企业用户的选择,在选择服务器操作系统时一定要注意系统在兼容局域网与广域网连接方面的能力,这样才能使企业真正地融入世界。

在局域网中,用户一般要实现文件共享、打印机共享、网络服务共享等功能,因而服务器的操作系统必须能较好地完成上述操作。

目前Microsoft公司推出的Windows 2000就是这样一款针对局域网客户机的操作系统软件,Windows 2000的综合特性使其很快成为所有企业中工作组级服务器上的主流操作系统。

其标准的安全性、可管理性和可靠性等强大功能,是目前小企业用户首选的操作系统。

另外,对于某些高级用户,尤其是政府等对安全比较关注的用户来说,他们本身具备较强的技术实力,可以考虑采用Linux操作系统。

目前,服务器厂商还推出完全方案化的产品——功能服务器,即把操作系统和应用系统直接安装在服务器中,以实现某些特定功能,如长城集团推出的E 通教育功能服务器,它主要是采用Linux系统,具有非常好的稳定性和易用性,而且不需要用户对Linux有深入了解就可以使用。

六、服务器选配方法国内市场上,服务器厂商多达十几个,低档服务器更有几十款之多。

下面结合至翔899来谈谈服务器配置问题。

1.磁盘子系统上面已经提过磁盘的故障概率及危害,不如直接配置双硬盘做RAID-1,因为现在硬盘的价格已降到了冰点,既提高了磁盘读取数据的性能,又保护了数据,可使用户高枕无忧。

令Linux用户放心的是,至翔899的IDE RAID支持Linux。

2.内存在小型用户环境中,内存通常得不到重视,用户往往花费更多的时间关注CPU的性能。

由于Windows 2000就要消耗100MB以上的内存,再加上应用,所以系统最少应配置256MB内存,配置到1GB也不为过。

请牢牢记住,提高内存容量通常是提高服务器性能的最有效的方法。

通常不会成为系统瓶颈。

但对于需要CPU进行密集型的运算,如数据库类应用,CPU的作用就很巨大。

记住:如果再增加一颗CPU,内存容量要同时加倍,才能有效发挥CPU的性能。

4.网卡 低端应用环境中,100Mbps网卡足够了。

至翔899的网卡还支持网络冗余(ALB)功能。

有兴趣的用户可以另买一款同型号的Intel 网卡进行网卡绑 定,既提高网络子系统的吞吐量,又保证了线路冗余。

让我们再看看文章开头的例子,可以发现那台部门级服务器用于6人工作组中,CPU过于强大,而文件服务对CPU的依赖又不大,显然是个浪费,而如果该部门级服务器内存配置过低的话,这台服务器的性能就会大打折扣。

最后,需要指出的是,小企业非常关心服务器的可扩充性。

可扩充性主要体现在计算性能的提升和存储容量的增长,而金长城至翔新899,在价格完全满足小型网络用户需求的情况下,仍然在这两方面有充分考虑。

至翔新899采用双处理器的系统设计,目前,设计主频已达到1.4GHz,用户可以在初期购买单CPU配置,待到企业增长或数据量增大时,可以升级为双CPU,其运算能力将大大提高,也保护了先前的投资。

至翔新899服务器在存储方面,采用先进的 IDE RAID技术,最大支持160GB×4的硬盘容量,为用户的业务扩展预留了足够的空间。

用途用户数量CPU数量内存大小(MB)硬盘文件/域控制服务器60左右硬盘RAID-1数据库应用服务器10左右硬盘 RAID-1综合应用服务器30左右硬盘RAID-1无盘站服务器60左右硬盘RAID-1视频服务器50(并发)硬盘 RAID-0厂商型号CPU最高CPU主频(GHz)CPU个数(最大)最大内存(GB)二级缓存(KB)内置硬盘架数量(最大)磁盘控制器I/O扩展槽系统总线(MHz)长城至翔1800Pentium 41.个IDE控制器,可选的IDE RAID功能,可以实现RAID0/1/0+15个32位/33MHz PCI扩展槽400至翔2800Intel PentiumⅢ Tualatin1.个集成2个Ultra ATA/100通道的Promise IDE RAID控制芯片,支持RAID 0/1/0+1或JBOD5个32位/33MHz PCI扩展槽133联想万全T 100Pentium 个ATA100 IDE控制器,Ultra160 SCSI控制器5个PCI 2.2标准扩展槽400万全T 200PentiumXeon个ATA100 IDE控制器,集成双通道Ultra160 SCSI控制器2个64位/133MHz PCI扩展槽,1个64位/100MHz PCI扩展槽,2个64位/66MHz PCI扩展槽400浪潮NP60Pentium 42./5125个IDE硬盘或4个SCSI硬盘集成双通道ATA100 IDE控制器;可选IDE RAID控制器能实现RAID 0/1;可选Ultra160 SCSI4个32位/33MHz PCI,1个ISA扩展槽,1个AGP扩展槽,1个CNR扩展槽400NP220TPentium Ⅲ1.2621.块IDE硬盘或4块SCSI硬盘集成双通道ATA100 IDE 控制器5个32位/33MHz PCI扩展槽,1个16位的ISA扩展槽133方正园明1050DPentium /5125个IDE5个32位/33MHz PCI扩展槽400园明1250DPentium Ⅲ1./5125个集成ATA 100 IDE RAID控制器5个32位/33MHz PCI扩展槽,1个16位的ISA扩展槽133总之,企业选购服务器,一定要根据自己的实际应用情况,合理选择型号和配置,做到既满足需求,又经济实惠。

四层和七层负载均衡的区别

(一)简单理解四层和七层负载均衡:① 所谓四层就是基于IP+端口的负载均衡;七层就是基于URL等应用层信息的负载均衡;同理,还有基于MAC地址的二层负载均衡和基于IP地址的三层负载均衡。

换句换说,二层负载均衡会通过一个虚拟MAC地址接收请求,然后再分配到真实的MAC地址;三层负载均衡会通过一个虚拟IP地址接收请求,然后再分配到真实的IP地址;四层通过虚拟IP+端口接收请求,然后再分配到真实的服务器;七层通过虚拟的URL或主机名接收请求,然后再分配到真实的服务器。

② 所谓的四到七层负载均衡,就是在对后台的服务器进行负载均衡时,依据四层的信息或七层的信息来决定怎么样转发流量。

比如四层的负载均衡,就是通过发布三层的IP地址(VIP),然后加四层的端口号,来决定哪些流量需要做负载均衡,对需要处理的流量进行NAT处理,转发至后台服务器,并记录下这个TCP或者UDP的流量是由哪台服务器处理的,后续这个连接的所有流量都同样转发到同一台服务器处理。

七层的负载均衡,就是在四层的基础上(没有四层是绝对不可能有七层的),再考虑应用层的特征,比如同一个Web服务器的负载均衡,除了根据VIP加80端口辨别是否需要处理的流量,还可根据七层的URL、浏览器类别、语言来决定是否要进行负载均衡。

举个例子,如果你的Web服务器分成两组,一组是中文语言的,一组是英文语言的,那么七层负载均衡就可以当用户来访问你的域名时,自动辨别用户语言,然后选择对应的语言服务器组进行负载均衡处理。

③ 负载均衡器通常称为四层交换机或七层交换机。

四层交换机主要分析IP层及TCP/UDP层,实现四层流量负载均衡。

七层交换机除了支持四层负载均衡以外,还有分析应用层的信息,如HTTP协议URI或Cookie信息。

1、负载均衡分为L4 switch(四层交换),即在OSI第4层工作,就是TCP层啦。

此种Load Balance不理解应用协议(如HTTP/FTP/MySQL等等)。

例子:LVS,F5。

2、另一种叫做L7 switch(七层交换),OSI的最高层,应用层。

此时,该Load Balancer能理解应用协议。

例子: haproxy,MySQL Proxy。

注意:上面的很多Load Balancer既可以做四层交换,也可以做七层交换。

(二)负载均衡设备也常被称为四到七层交换机,那么四层和七层两者到底区别在哪里?第一,技术原理上的区别。

所谓四层负载均衡,也就是主要通过报文中的目标地址和端口,再加上负载均衡设备设置的服务器选择方式,决定最终选择的内部服务器。

以常见的TCP为例,负载均衡设备在接收到第一个来自客户端的SYN 请求时,即通过上述方式选择一个最佳的服务器,并对报文中目标IP地址进行修改(改为后端服务器IP),直接转发给该服务器。

TCP的连接建立,即三次握手是客户端和服务器直接建立的,负载均衡设备只是起到一个类似路由器的转发动作。

在某些部署情况下,为保证服务器回包可以正确返回给负载均衡设备,在转发报文的同时可能还会对报文原来的源地址进行修改。

所谓七层负载均衡,也称为“内容交换”,也就是主要通过报文中的真正有意义的应用层内容,再加上负载均衡设备设置的服务器选择方式,决定最终选择的内部服务器。

以常见的TCP为例,负载均衡设备如果要根据真正的应用层内容再选择服务器,只能先代理最终的服务器和客户端建立连接(三次握手)后,才可能接受到客户端发送的真正应用层内容的报文,然后再根据该报文中的特定字段,再加上负载均衡设备设置的服务器选择方式,决定最终选择的内部服务器。

负载均衡设备在这种情况下,更类似于一个代理服务器。

负载均衡和前端的客户端以及后端的服务器会分别建立TCP连接。

所以从这个技术原理上来看,七层负载均衡明显的对负载均衡设备的要求更高,处理七层的能力也必然会低于四层模式的部署方式。

第二,应用场景的需求。

七层应用负载的好处,是使得整个网络更智能化。

例如访问一个网站的用户流量,可以通过七层的方式,将对图片类的请求转发到特定的图片服务器并可以使用缓存技术;将对文字类的请求可以转发到特定的文字服务器并可以使用压缩技术。

当然这只是七层应用的一个小案例,从技术原理上,这种方式可以对客户端的请求和服务器的响应进行任意意义上的修改,极大的提升了应用系统在网络层的灵活性。

很多在后台,例如Nginx或者Apache上部署的功能可以前移到负载均衡设备上,例如客户请求中的Header重写,服务器响应中的关键字过滤或者内容插入等功能。

另外一个常常被提到功能就是安全性。

网络中最常见的SYN Flood攻击,即黑客控制众多源客户端,使用虚假IP地址对同一目标发送SYN攻击,通常这种攻击会大量发送SYN报文,耗尽服务器上的相关资源,以达到Denial of Service(DoS)的目的。

从技术原理上也可以看出,四层模式下这些SYN攻击都会被转发到后端的服务器上;而七层模式下这些SYN攻击自然在负载均衡设备上就截止,不会影响后台服务器的正常运营。

另外负载均衡设备可以在七层层面设定多种策略,过滤特定报文,例如SQL Injection等应用层面的特定攻击手段,从应用层面进一步提高系统整体安全。

现在的7层负载均衡,主要还是着重于应用HTTP协议,所以其应用范围主要是众多的网站或者内部信息平台等基于B/S开发的系统。

4层负载均衡则对应其他TCP应用,例如基于C/S开发的ERP等系统。

第三,七层应用需要考虑的问题。

1:是否真的必要,七层应用的确可以提高流量智能化,同时必不可免的带来设备配置复杂,负载均衡压力增高以及故障排查上的复杂性等问题。

在设计系统时需要考虑四层七层同时应用的混杂情况。

2:是否真的可以提高安全性。

例如SYN Flood攻击,七层模式的确将这些流量从服务器屏蔽,但负载均衡设备本身要有强大的抗DDoS能力,否则即使服务器正常而作为中枢调度的负载均衡设备故障也会导致整个应用的崩溃。

3:是否有足够的灵活度。

七层应用的优势是可以让整个应用的流量智能化,但是负载均衡设备需要提供完善的七层功能,满足客户根据不同情况的基于应用的调度。

最简单的一个考核就是能否取代后台Nginx或者Apache等服务器上的调度功能。

能够提供一个七层应用开发接口的负载均衡设备,可以让客户根据需求任意设定功能,才真正有可能提供强大的灵活性和智能性。

(三)负载均衡四七层介绍:负载均衡(Load Balance)建立在现有网络结构之上,它提供了一种廉价有效透明的方法扩展网络设备和服务器的带宽、增加吞吐量、加强网络数据处理能力、提高网络的灵活性和可用性。

负载均衡有两方面的含义:首先,大量的并发访问或数据流量分担到多台节点设备上分别处理,减少用户等待响应的时间;其次,单个重负载的运算分担到多台节点设备上做并行处理,每个节点设备处理结束后,将结果汇总,返回给用户,系统处理能力得到大幅度提高。

本文所要介绍的负载均衡技术主要是指在均衡服务器群中所有服务器和应用程序之间流量负载的应用,目前负载均衡技术大多数是用于提高诸如在Web服务器、FTP服务器和其它关键任务服务器上的Internet服务器程序的可用性和可伸缩性。

负载均衡技术分类目前有许多不同的负载均衡技术用以满足不同的应用需求,下面从负载均衡所采用的设备对象、应用的网络层次(指OSI参考模型)及应用的地理结构等来分类。

软/硬件负载均衡软件负载均衡解决方案是指在一台或多台服务器相应的操作系统上安装一个或多个附加软件来实现负载均衡,如DNS Load Balance,CheckPoint Firewall-1 ConnectControl等,它的优点是基于特定环境,配置简单,使用灵活,成本低廉,可以满足一般的负载均衡需求。

软件解决方案缺点也较多,因为每台服务器上安装额外的软件运行会消耗系统不定量的资源,越是功能强大的模块,消耗得越多,所以当连接请求特别大的时候,软件本身会成为服务器工作成败的一个关键;软件可扩展性并不是很好,受到操作系统的限制;由于操作系统本身的Bug,往往会引起安全问题。

硬件负载均衡解决方案是直接在服务器和外部网络间安装负载均衡设备,这种设备我们通常称之为负载均衡器,由于专门的设备完成专门的任务,独立于操作系统,整体性能得到大量提高,加上多样化的负载均衡策略,智能化的流量管理,可达到最佳的负载均衡需求。

负载均衡器有多种多样的形式,除了作为独立意义上的负载均衡器外,有些负载均衡器集成在交换设备中,置于服务器与Internet链接之间,有些则以两块网络适配器将这一功能集成到PC中,一块连接到Internet上,一块连接到后端服务器群的内部网络上。

一般而言,硬件负载均衡在功能、性能上优于软件方式,不过成本昂贵。

本地/全局负载均衡负载均衡从其应用的地理结构上分为本地负载均衡(Local Load Balance)和全局负载均衡(Global Load Balance,也叫地域负载均衡),本地负载均衡是指对本地的服务器群做负载均衡,全局负载均衡是指对分别放置在不同的地理位置、有不同网络结构的服务器群间作负载均衡。

本地负载均衡能有效地解决数据流量过大、网络负荷过重的问题,并且不需花费昂贵开支购置性能卓越的服务器,充分利用现有设备,避免服务器单点故障造成数据流量的损失。

其有灵活多样的均衡策略把数据流量合理地分配给服务器群内的服务器共同负担。

即使是再给现有服务器扩充升级,也只是简单地增加一个新的服务器到服务群中,而不需改变现有网络结构、停止现有的服务。

全局负载均衡主要用于在一个多区域拥有自己服务器的站点,为了使全球用户只以一个IP地址或域名就能访问到离自己最近的服务器,从而获得最快的访问速度,也可用于子公司分散站点分布广的大公司通过Intranet(企业内部互联网)来达到资源统一合理分配的目的。

网络层次上的负载均衡针对网络上负载过重的不同瓶颈所在,从网络的不同层次入手,我们可以采用相应的负载均衡技术来解决现有问题。

随着带宽增加,数据流量不断增大,网络核心部分的数据接口将面临瓶颈问题,原有的单一线路将很难满足需求,而且线路的升级又过于昂贵甚至难以实现,这时就可以考虑采用链路聚合(Trunking)技术。

链路聚合技术(第二层负载均衡)将多条物理链路当作一条单一的聚合逻辑链路使用,网络数据流量由聚合逻辑链路中所有物理链路共同承担,由此在逻辑上增大了链路的容量,使其能满足带宽增加的需求。

现代负载均衡技术通常操作于网络的第四层或第七层。

第四层负载均衡将一个Internet上合法注册的IP地址映射为多个内部服务器的IP地址,对每次 TCP连接请求动态使用其中一个内部IP地址,达到负载均衡的目的。

在第四层交换机中,此种均衡技术得到广泛的应用,一个目标地址是服务器群VIP(虚拟 IP,Virtual IP address)连接请求的数据包流经交换机,交换机根据源端和目的IP地址、TCP或UDP端口号和一定的负载均衡策略,在服务器IP和VIP间进行映射,选取服务器群中最好的服务器来处理连接请求。

第七层负载均衡控制应用层服务的内容,提供了一种对访问流量的高层控制方式,适合对HTTP服务器群的应用。

第七层负载均衡技术通过检查流经的HTTP报头,根据报头内的信息来执行负载均衡任务。

第七层负载均衡优点表现在如下几个方面:通过对HTTP报头的检查,可以检测出HTTP400、500和600系列的错误信息,因而能透明地将连接请求重新定向到另一台服务器,避免应用层故障。

可根据流经的数据类型(如判断数据包是图像文件、压缩文件或多媒体文件格式等),把数据流量引向相应内容的服务器来处理,增加系统性能。

能根据连接请求的类型,如是普通文本、图象等静态文档请求,还是asp、cgi等的动态文档请求,把相应的请求引向相应的服务器来处理,提高系统的性能及安全性。

第七层负载均衡受到其所支持的协议限制(一般只有HTTP),这样就限制了它应用的广泛性,并且检查HTTP报头会占用大量的系统资源,势必会影响到系统的性能,在大量连接请求的情况下,负载均衡设备自身容易成为网络整体性能的瓶颈。

负载均衡策略在实际应用中,我们可能不想仅仅是把客户端的服务请求平均地分配给内部服务器,而不管服务器是否宕机。

而是想使Pentium III服务器比Pentium II能接受更多的服务请求,一台处理服务请求较少的服务器能分配到更多的服务请求,出现故障的服务器将不再接受服务请求直至故障恢复等等。

选择合适的负载均衡策略,使多个设备能很好的共同完成任务,消除或避免现有网络负载分布不均、数据流量拥挤反应时间长的瓶颈。

在各负载均衡方式中,针对不同的应用需求,在OSI参考模型的第二、三、四、七层的负载均衡都有相应的负载均衡策略。

负载均衡策略的优劣及其实现的难易程度有两个关键因素:一、负载均衡算法,二、对网络系统状况的检测方式和能力。

考虑到服务请求的不同类型、服务器的不同处理能力以及随机选择造成的负载分配不均匀等问题,为了更加合理的把负载分配给内部的多个服务器,就需要应用相应的能够正确反映各个服务器处理能力及网络状态的负载均衡算法:轮循均衡(Round Robin):每一次来自网络的请求轮流分配给内部中的服务器,从1至N然后重新开始。

此种均衡算法适合于服务器组中的所有服务器都有相同的软硬件配置并且平均服务请求相对均衡的情况。

权重轮循均衡(Weighted Round Robin):根据服务器的不同处理能力,给每个服务器分配不同的权值,使其能够接受相应权值数的服务请求。

例如:服务器A的权值被设计成1,B的权值是 3,C的权值是6,则服务器A、B、C将分别接受到10%、30%、60%的服务请求。

此种均衡算法能确保高性能的服务器得到更多的使用率,避免低性能的服务器负载过重。

随机均衡(Random):把来自网络的请求随机分配给内部中的多个服务器。

权重随机均衡(Weighted Random):此种均衡算法类似于权重轮循算法,不过在处理请求分担时是个随机选择的过程。

响应速度均衡(Response Time):负载均衡设备对内部各服务器发出一个探测请求(例如Ping),然后根据内部中各服务器对探测请求的最快响应时间来决定哪一台服务器来响应客户端的服务请求。

此种均衡算法能较好的反映服务器的当前运行状态,但这最快响应时间仅仅指的是负载均衡设备与服务器间的最快响应时间,而不是客户端与服务器间的最快响应时间。

最少连接数均衡(Least Connection):客户端的每一次请求服务在服务器停留的时间可能会有较大的差异,随着工作时间加长,如果采用简单的轮循或随机均衡算法,每一台服务器上的连接进程可能会产生极大的不同,并没有达到真正的负载均衡。

最少连接数均衡算法对内部中需负载的每一台服务器都有一个数据记录,记录当前该服务器正在处理的连接数量,当有新的服务连接请求时,将把当前请求分配给连接数最少的服务器,使均衡更加符合实际情况,负载更加均衡。

此种均衡算法适合长时处理的请求服务,如FTP。

处理能力均衡:此种均衡算法将把服务请求分配给内部中处理负荷(根据服务器CPU型号、CPU数量、内存大小及当前连接数等换算而成)最轻的服务器,由于考虑到了内部服务器的处理能力及当前网络运行状况,所以此种均衡算法相对来说更加精确,尤其适合运用到第七层(应用层)负载均衡的情况下。

DNS响应均衡(Flash DNS):在Internet上,无论是HTTP、FTP或是其它的服务请求,客户端一般都是通过域名解析来找到服务器确切的IP地址的。

在此均衡算法下,分处在不同地理位置的负载均衡设备收到同一个客户端的域名解析请求,并在同一时间内把此域名解析成各自相对应服务器的IP地址(即与此负载均衡设备在同一位地理位置的服务器的IP地址)并返回给客户端,则客户端将以最先收到的域名解析IP地址来继续请求服务,而忽略其它的IP地址响应。

在种均衡策略适合应用在全局负载均衡的情况下,对本地负载均衡是没有意义的。

尽管有多种的负载均衡算法可以较好的把数据流量分配给服务器去负载,但如果负载均衡策略没有对网络系统状况的检测方式和能力,一旦在某台服务器或某段负载均衡设备与服务器网络间出现故障的情况下,负载均衡设备依然把一部分数据流量引向那台服务器,这势必造成大量的服务请求被丢失,达不到不间断可用性的要求。

所以良好的负载均衡策略应有对网络故障、服务器系统故障、应用服务故障的检测方式和能力:Ping侦测:通过ping的方式检测服务器及网络系统状况,此种方式简单快速,但只能大致检测出网络及服务器上的操作系统是否正常,对服务器上的应用服务检测就无能为力了。

TCP Open侦测:每个服务都会开放某个通过TCP连接,检测服务器上某个TCP端口(如Telnet的23口,HTTP的80口等)是否开放来判断服务是否正常。

HTTP URL侦测:比如向HTTP服务器发出一个对文件的访问请求,如果收到错误信息,则认为服务器出现故障。

负载均衡策略的优劣除受上面所讲的两个因素影响外,在有些应用情况下,我们需要将来自同一客户端的所有请求都分配给同一台服务器去负担,例如服务器将客户端注册、购物等服务请求信息保存的本地数据库的情况下,把客户端的子请求分配给同一台服务器来处理就显的至关重要了。

有两种方式可以解决此问题,一是根据IP地址把来自同一客户端的多次请求分配给同一台服务器处理,客户端IP地址与服务器的对应信息是保存在负载均衡设备上的;二是在客户端浏览器 cookie内做独一无二的标识来把多次请求分配给同一台服务器处理,适合通过代理服务器上网的客户端。

还有一种路径外返回模式(Out of Path Return),当客户端连接请求发送给负载均衡设备的时候,中心负载均衡设备将请求引向某个服务器,服务器的回应请求不再返回给中心负载均衡设备,即绕过流量分配器,直接返回给客户端,因此中心负载均衡设备只负责接受并转发请求,其网络负担就减少了很多,并且给客户端提供了更快的响应时间。

此种模式一般用于HTTP服务器群,在各服务器上要安装一块虚拟网络适配器,并将其IP地址设为服务器群的VIP,这样才能在服务器直接回应客户端请求时顺利的达成三次握手。

负载均衡实施要素负载均衡方案应是在网站建设初期就应考虑的问题,不过有时随着访问流量的爆炸性增长,超出决策者的意料,这也就成为不得不面对的问题。

当我们在引入某种负载均衡方案乃至具体实施时,像其他的许多方案一样,首先是确定当前及将来的应用需求,然后在代价与收效之间做出权衡。

针对当前及将来的应用需求,分析网络瓶颈的不同所在,我们就需要确立是采用哪一类的负载均衡技术,采用什么样的均衡策略,在可用性、兼容性、安全性等等方面要满足多大的需求,如此等等。

不管负载均衡方案是采用花费较少的软件方式,还是购买代价高昂在性能功能上更强的第四层交换机、负载均衡器等硬件方式来实现,亦或其他种类不同的均衡技术,下面这几项都是我们在引入均衡方案时可能要考虑的问题:性能:性能是我们在引入均衡方案时需要重点考虑的问题,但也是一个最难把握的问题。

衡量性能时可将每秒钟通过网络的数据包数目做为一个参数,另一个参数是均衡方案中服务器群所能处理的最大并发连接数目,但是,假设一个均衡系统能处理百万计的并发连接数,可是却只能以每秒2个包的速率转发,这显然是没有任何作用的。

性能的优劣与负载均衡设备的处理能力、采用的均衡策略息息相关,并且有两点需要注意:一、均衡方案对服务器群整体的性能,这是响应客户端连接请求速度的关键;二、负载均衡设备自身的性能,避免有大量连接请求时自身性能不足而成为服务瓶颈。

有时我们也可以考虑采用混合型负载均衡策略来提升服务器群的总体性能,如DNS负载均衡与NAT负载均衡相结合。

另外,针对有大量静态文档请求的站点,也可以考虑采用高速缓存技术,相对来说更节省费用,更能提高响应性能;对有大量ssl/xml内容传输的站点,更应考虑采用ssl/xml加速技术。

可扩展性:IT技术日新月异,一年以前最新的产品,现在或许已是网络中性能最低的产品;业务量的急速上升,一年前的网络,现在需要新一轮的扩展。

合适的均衡解决方案应能满足这些需求,能均衡不同操作系统和硬件平台之间的负载,能均衡HTTP、邮件、新闻、代理、数据库、防火墙和 Cache等不同服务器的负载,并且能以对客户端完全透明的方式动态增加或删除某些资源。

灵活性:均衡解决方案应能灵活地提供不同的应用需求,满足应用需求的不断变化。

在不同的服务器群有不同的应用需求时,应有多样的均衡策略提供更广泛的选择。

可靠性:在对服务质量要求较高的站点,负载均衡解决方案应能为服务器群提供完全的容错性和高可用性。

但在负载均衡设备自身出现故障时,应该有良好的冗余解决方案,提高可靠性。

使用冗余时,处于同一个冗余单元的多个负载均衡设备必须具有有效的方式以便互相进行监控,保护系统尽可能地避免遭受到重大故障的损失。

易管理性:不管是通过软件还是硬件方式的均衡解决方案,我们都希望它有灵活、直观和安全的管理方式,这样便于安装、配置、维护和监控,提高工作效率,避免差错。

在硬件负载均衡设备上,目前主要有三种管理方式可供选择:一、命令行接口(CLI:Command Line Interface),可通过超级终端连接负载均衡设备串行接口来管理,也能telnet远程登录管理,在初始化配置时,往往要用到前者;二、图形用户接口(GUI:Graphical User Interfaces),有基于普通web页的管理,也有通过Java Applet 进行安全管理,一般都需要管理端安装有某个版本的浏览器;三、SNMP(Simple Network Management Protocol,简单网络管理协议)支持,通过第三方网络管理软件对符合SNMP标准的设备进行管理。

选购服务器时应考察的主要配置参数有哪些?

和内存:CPU的类型、主频和数量在相当程度上决定着服务器的性能;服务器应采用专用的ECC校验内存,并且应当与不同的CPU搭配使用。

2.芯片组与主板:即使采用相同的芯片组,不同的主板设计也会对服务器性能产生重要影响。

3.网卡:服务器应当连接在传输速率最快的端口上,并最少配置一块千兆网卡。

对于某些有特殊应用的服务器(如FTP、文件服务器或视频点播服务器),还应当配置两块千兆网卡。

4.硬盘和RAID卡:硬盘的读取/写入速率决定着服务器的处理速度和响应速率。

除了在入门级服务器上可采用IDE硬盘外,通常都应采用传输速率更高、扩展性更好的SCSI硬盘。

对于一些不能轻易中止运行的服务器而言,还应当采用热插拔硬盘,以保证服务器的不停机维护和扩容。

5.冗余:磁盘冗余采用两块或多块硬盘来实现磁盘阵列;网卡、电源、风扇等部件冗余可以保证部分硬件损坏之后,服务器仍然能够正常运行。

【服务器采购五大问题需提前考虑】

服务器市场上产品种类繁多,各厂商开始花样翻新地打服务、打方案,使用户在选购服务器产品时迷惑也越来越多。

下面几个问题的解答相信能在用户选购服务器时提供一些参考,因为,春之华造就秋之实,选到合适的服务器产品,是保证业务正常运营的一个必要因素。

【问题一:选购IA服务器时应考察的主要配置参数有哪些?】

CPU和内存CPU的类型、主频和数量在相当程度上决定着服务器的性能;服务器应采用专用的ECC校验内存,并且应当与不同的CPU搭配使用。

芯片组与主板即使采用相同的芯片组,不同的主板设计也会对服务器性能产生重要影响。

网卡服务器应当连接在传输速率最快的端口上,并最少配置一块千兆网卡。

对于某些有特殊应用的服务器(如FTP、文件服务器或视频点播服务器),还应当配置两块千兆网卡。

硬盘和RAID卡硬盘的读取/写入速率决定着服务器的处理速度和响应速率。

除了在入门级服务器上可采用IDE硬盘外,通常都应采用传输速率更高、扩展性更好的SCSI硬盘。

对于一些不能轻易中止运行的服务器而言,还应当采用热插拔硬盘,以保证服务器的不停机维护和扩容。

磁盘冗余采用两块或多块硬盘来实现磁盘阵列;网卡、电源、风扇等部件冗余可以保证部分硬件损坏之后,服务器仍然能够正常运行。

热插拔是指带电进行硬盘或板卡的插拔操作,实现故障恢复和系统扩容。

同时,在选择IA服务器时通常需要考虑可管理性、可用性、可扩展性、安全性以及可靠性等几方面的性能指标。

【问题二:64位服务器覆盖的应用范围?】

这里要说的,仍然是安腾、AMD64等一些新型64位服务器。

从应用类型来看,大致可分为主域服务器、数据库服务器、Web服务器、FTP服务器和邮件服务器、高性能计算集群系统几类。

主域控制器:网络、用户、计算机的管理中心,提供安全的网络工作环境。

主域控制器的系统瓶颈是内存、网络、CPU、内存配置。

文件服务器:文件服务器作为网络的数据存储仓库,其性能要求是在网络上的用户和服务器磁盘子系统之间快速传递数据。

数据库服务器:数据库引擎包括DB2、SQLServer、Oracle、Sybase等。

数据库服务器一般需要使用多处理器的系统,以SQLServer为例,SQLServer能够充分利用SMP技术来执行多线程任务,通过使用多个CPU,对数据库进行并行操作来提高吞吐量。

另外,SQLServer对L2缓存的点击率达到90%,所以L2缓存越大越好。

内存和磁盘子系统对于数据库服务器来说也是至关重要的部分。

Web服务器:Web服务器用来响应Web请求,其性能是由网站内容来决定的。

如果Web站点是静态的,系统瓶颈依次是:网络、内存、CPU;如果Web服务器主要进行密集计算(例如动态产生Web页),系统瓶颈依次是:内存、CPU、磁盘、网络,因为这些网站使用连接数据库的动态内容产生交易和查询,这都需要额外的CPU资源,更要有足够的内存来缓存和处理动态页面。

高性能计算用的集群系统:一般在4节点以上,节点机使用基于安腾、AMD64技术的Opteron系统,这种集群系统的性能主要取决于厂商的技术实力、集群系统的设计、针对应用的调优等方面。

【问题三:多处理器服务器选购的策略如何?】

在购买多处理器系统之前,你必须了解工作负载有多大,还要选择合适的应用软件和操作系统,然后再确定使它们可以运行起来的服务器。

值得注意的是,你最好购买比你目前所需的计算能力稍高一些的服务器,以便适应未来扩展的需要。

首先,处理器的选择与主要操作系统平台和软件的选择密切相关。

你可以选择SPARC、PowerPC等处理器,它们分别应用于SunSolaris、IBMAIX或Linux等操作系统上。

大多数用户出于价格和操作系统方面的考虑也采用Intel处理器。

其次,要选择合适的I/O架构。

目前最常见的总线结构是PCI、PCI-X。

PCI迅速发展为包括32位和64位数据通道,并对33MHz和66MHz时钟速度提供支持。

PCIExpress是一种全新的串行技术,它彻底变革了原来的并行PCI技术,同时又能兼容PCI技术。

PCIExpress总线采用点对点技术,能够为每一块设备分配独享通道带宽,不需要在设备之间共享资源。

充分保障各设备的带宽资源。

然后,还要选择合适的内存。

大多数多处理器系统目前都支持纠错SDRAM。

最后,是存储的问题。

服务器所支持的驱动舱个数必然会影响到服务器的外形和高度。

如果将服务器连接到SAN上,则对内部存储没有太多的要求。

但是,如果设备安放在没有SAN的远程位置上,那么可以购买支持多达8个可外部访问的热插拔SCSI驱动器的系统。

【问题四:刀片服务器用武之地何在?】

刀片服务器最初定位于寻求将大量的计算能力压缩到狭小空间中的服务提供商和大型企业。

现在,许多系统厂商把能够整合数据中心基础设施、去除杂七杂八的线缆和优化管理、高性价比等作为卖点来销售这些薄片状的服务器。

刀片服务器大小仅为标准的1U服务器几分之一,并且需要电能更少,安装在使它们可以共享资源的专用机箱中。

【问题五:刀片服务器除了在计算密度上带来回报外,成本会节约吗?】

专家认为,部署刀片服务器将得到节省空间费用的回报。

在使用刀片服务器时,能够在每机架单位上达到10GHz的计算能力,而在使用传统平台时,每机架单位实际为0.5GHz的计算能力,这是20倍的改进。

现在数据中心空间费用非常昂贵,而这正是使用刀片服务器得到巨大回报的地方:计算密度。

然而,早期采用者也指出刀片服务器并不是对所有人都适用。

有的厂商会说你必须拥有刀片服务器,他们将用刀片服务器代替所有的服务器。

对于用户来说,应该在最合适的地方使用它,如果你试图更高效率地利用空间的话,就应当考虑选择刀片服务器。

【硬件】

CPU、内存、硬盘、网卡

域控对机器要求不高,网卡要好点、快点

MIS或ERP对内存、硬盘、网卡的要求较高

网站对内存、网卡的要求较高

数据库对CPU、内存、硬盘、网卡的要求较高

【其他】

CPU和内存:CPU的类型、主频和数量在相当程度上决定着服务器的性能;服务器应采用专用的ECC校验内存,并且应当与不同的CPU搭配使用。

芯片组与主板:即使采用相同的芯片组,不同的主板设计也会对服务器性能产生重要影响。

网卡:服务器应当连接在传输速率最快的端口上,并最少配置一块千兆网卡。

对于某些有特殊应用的服务器(如FTP、文件服务器或视频点播服务器),还应当配置两块千兆网卡。

硬盘和RAID卡:硬盘的读取/写入速率决定着服务器的处理速度和响应速率。

除了在入门级服务器上可采用IDE硬盘外,通常都应采用传输速率更高、扩展性更好的SCSI硬盘。

对于一些不能轻易中止运行的服务器而言,还应当采用热插拔硬盘,以保证服务器的不停机维护和扩容。

冗余:磁盘冗余采用两块或多块硬盘来实现磁盘阵列;网卡、电源、风扇等部件冗余可以保证部分硬件损坏之后,服务器仍然能够正常运行。

热插拔:是指带电进行硬盘或板卡的插拔操作,实现故障恢复和系统扩容。

同时,在选择IA服务器时通常需要考虑可管理性、可用性、可扩展性、安全性以及可靠性等几方面的性能指标。

未经允许不得转载:虎跃云 » 不同工作负载的服务器数量:为数据库、应用程序和网站定制 (不同工作负载一样吗)
分享到
0
上一篇
下一篇

相关推荐

联系我们

huhuidc

复制已复制
262730666复制已复制
13943842618复制已复制
262730666@qq.com复制已复制
0438-7280666复制已复制
微信公众号
huyueidc_com复制已复制
关注官方微信,了解最新资讯
客服微信
huhuidc复制已复制
商务号,添加请说明来意
contact-img
客服QQ
262730666复制已复制
商务号,添加请说明来意
在线咨询
13943842618复制已复制
工作时间:8:30-12:00;13:30-18:00
客服邮箱
服务热线
0438-7280666复制已复制
24小时服务热线